
Assignment 2: Comparative Analysis of 

Major Web Servers in Internet Technology 

Introduction 

Web servers are fundamental components of Internet infrastructure, responsible for hosting, 

processing, and delivering web content to clients. This analysis examines the major web servers 

in use today, comparing their features, performance, and suitability for different applications. 

Overview of Web Servers 

A web server is software and hardware that uses HTTP (Hypertext Transfer Protocol) and other 

protocols to respond to client requests made over the World Wide Web. The primary function is 

to store, process, and deliver web pages to users. The web server receives requests, processes 

them, and sends back the appropriate response, typically HTML documents, images, stylesheets, 

and scripts. 

Major Web Servers 

1. Apache HTTP Server 

Developer: Apache Software Foundation 

Initial Release: 1995 

License: Open Source (Apache License 2.0) 

Market Share: Approximately 31-35% (as of 2024) 

Overview: Apache is one of the oldest and most widely used web servers. It has been the 

dominant web server for decades and continues to be popular due to its flexibility, power, and 

extensive community support. 

Key Features: 

• Modular architecture allowing functionality extensions 

• Support for multiple programming languages (PHP, Python, Perl) 

• .htaccess file for directory-level configuration 

• Virtual hosting capabilities 

• Extensive authentication and authorization options 

• SSL/TLS support 

• URL rewriting and redirection 

• Load balancing capabilities 

• IPv6 support 

Advantages: 



• Highly flexible and customizable 

• Extensive documentation and community support 

• Platform-independent (runs on Unix, Linux, Windows, macOS) 

• Rich ecosystem of modules and plugins 

• Well-established and thoroughly tested 

• Free and open source 

• Easy configuration through .htaccess files 

Disadvantages: 

• Higher memory consumption compared to newer alternatives 

• Performance can degrade under heavy traffic 

• Process-based architecture is less efficient than event-driven models 

• Can be slower than Nginx for static content 

• Complex configuration for advanced setups 

Best Use Cases: 

• Shared hosting environments 

• Applications requiring .htaccess functionality 

• Legacy applications 

• Situations requiring extensive module support 

• Dynamic content-heavy websites 

2. Nginx 

Developer: NGINX, Inc. (now part of F5 Networks) 

Initial Release: 2004 

License: Open Source (BSD-like license) with commercial version 

Market Share: Approximately 33-37% (as of 2024) 

Overview: Nginx (pronounced "engine-x") was designed to solve the C10K problem (handling 

10,000 concurrent connections). It uses an asynchronous, event-driven architecture that makes it 

highly efficient for serving static content and as a reverse proxy. 

Key Features: 

• Asynchronous, event-driven architecture 

• Reverse proxy and load balancing 

• HTTP/2 and HTTP/3 support 

• FastCGI support for dynamic content 

• SSL/TLS termination 

• WebSocket support 

• High performance for static content 

• Low memory footprint 

• Built-in caching mechanisms 



Advantages: 

• Excellent performance for static content 

• Low memory usage and high concurrency 

• Efficient handling of thousands of simultaneous connections 

• Simple and logical configuration syntax 

• Excellent as a reverse proxy and load balancer 

• Fast and lightweight 

• Better performance under high load 

Disadvantages: 

• No support for .htaccess files 

• Less flexible than Apache for certain configurations 

• Smaller module ecosystem compared to Apache 

• Dynamic content requires external processing (PHP-FPM, etc.) 

• Centralized configuration only (no directory-level config) 

• Steeper learning curve for Apache users 

Best Use Cases: 

• High-traffic websites 

• Static content delivery 

• Reverse proxy and load balancing 

• Microservices architectures 

• API gateways 

• Media streaming 

3. Microsoft Internet Information Services (IIS) 

Developer: Microsoft Corporation 

Initial Release: 1995 

License: Proprietary (included with Windows Server) 

Market Share: Approximately 6-8% (as of 2024) 

Overview: IIS is Microsoft's web server solution, tightly integrated with the Windows Server 

operating system and the .NET Framework. It's the preferred choice for hosting applications built 

on Microsoft technologies. 

Key Features: 

• Deep integration with Windows and .NET Framework 

• Support for ASP.NET and .NET Core 

• Windows Authentication integration 

• Built-in FTP server 

• WebDAV support 



• Application pool isolation 

• Centralized management console 

• PowerShell management capabilities 

Advantages: 

• Seamless Windows integration 

• Excellent support for ASP.NET applications 

• Strong security features with Windows integration 

• User-friendly GUI management interface 

• Good performance for Windows-based applications 

• Integrated with Active Directory 

• Commercial support from Microsoft 

Disadvantages: 

• Windows-only (limited to Windows Server) 

• Licensing costs for Windows Server 

• Less flexible than Apache or Nginx 

• Smaller open-source community 

• Less suitable for non-Microsoft technologies 

• Higher resource consumption 

• Limited cross-platform compatibility 

Best Use Cases: 

• ASP.NET and .NET Core applications 

• Windows-centric environments 

• Enterprise applications requiring Active Directory integration 

• SharePoint and Exchange servers 

• Applications requiring Windows Authentication 

4. LiteSpeed Web Server 

Developer: LiteSpeed Technologies 

Initial Release: 2003 

License: Proprietary (with OpenLiteSpeed open-source version) 

Market Share: Approximately 10-12% (as of 2024) 

Overview: LiteSpeed is a high-performance, Apache-compatible web server that claims to be 

faster and more efficient than Apache while maintaining compatibility with Apache features. 

Key Features: 

• Apache configuration compatibility 

• Event-driven architecture 



• Built-in anti-DDoS features 

• Native support for HTTP/3 (QUIC) 

• LiteSpeed Cache for WordPress optimization 

• Built-in PageSpeed optimization 

• ModSecurity compatibility 

• Low resource consumption 

Advantages: 

• Excellent performance (faster than Apache and Nginx in many cases) 

• Drop-in Apache replacement (supports .htaccess) 

• Lower resource consumption than Apache 

• Built-in cache acceleration 

• Strong security features 

• Easy migration from Apache 

• Excellent for WordPress hosting 

Disadvantages: 

• Commercial license required for full features 

• Smaller community compared to Apache/Nginx 

• Less extensive documentation 

• Proprietary software concerns 

• Limited third-party module ecosystem 

• Cost consideration for commercial use 

Best Use Cases: 

• High-traffic WordPress sites 

• Shared hosting environments 

• Apache migration projects 

• E-commerce platforms 

• Sites requiring Apache compatibility with better performance 

5. Apache Tomcat 

Developer: Apache Software Foundation 

Initial Release: 1999 

License: Open Source (Apache License 2.0) 

Market Share: Approximately 2-3% (as of 2024) 

Overview: Tomcat is not a traditional web server but a servlet container designed specifically for 

running Java applications. It implements Java Servlet, JavaServer Pages (JSP), and WebSocket 

specifications. 

Key Features: 



• Java Servlet and JSP support 

• WebSocket implementation 

• Java EE specifications support 

• Embeddable in Java applications 

• Connection pooling 

• Clustering capabilities 

• Administration web interface 

Advantages: 

• Excellent for Java web applications 

• Lightweight compared to full Java EE servers 

• Easy to configure and deploy 

• Large Java community support 

• Free and open source 

• Can be integrated with Apache or Nginx 

• Good documentation 

Disadvantages: 

• Limited to Java applications 

• Not ideal for serving static content 

• Requires Java Runtime Environment 

• Less efficient than dedicated web servers for non-Java content 

• Higher memory usage for simple sites 

• Steeper learning curve for non-Java developers 

Best Use Cases: 

• Java web applications 

• Servlet and JSP hosting 

• Java EE application servers 

• RESTful API services in Java 

• Development and testing of Java web applications 

6. Caddy 

Developer: Light Code Labs 

Initial Release: 2015 

License: Open Source (Apache License 2.0) 

Market Share: Less than 1% (as of 2024) 

Overview: Caddy is a modern web server with automatic HTTPS, written in Go. It emphasizes 

simplicity, security, and ease of use with a focus on modern web standards. 

Key Features: 



• Automatic HTTPS with Let's Encrypt 

• HTTP/2 and HTTP/3 support by default 

• Simple configuration (Caddyfile) 

• Reverse proxy capabilities 

• Automatic certificate renewal 

• Zero-downtime configuration reloads 

• Built-in markdown rendering 

• Modern security defaults 

Advantages: 

• Automatic HTTPS setup and renewal 

• Extremely simple configuration 

• Modern protocol support out of the box 

• Excellent security defaults 

• Fast deployment and setup 

• Single binary deployment 

• Active development and updates 

Disadvantages: 

• Relatively new and less tested 

• Smaller community and ecosystem 

• Limited enterprise adoption 

• Fewer third-party modules 

• Less documentation compared to mature servers 

• Commercial licensing for some features in older versions 

Best Use Cases: 

• Modern web applications 

• Microservices deployments 

• Rapid prototyping and development 

• Sites requiring automatic HTTPS 

• Containerized applications 

• Personal projects and small businesses 

Comparative Analysis 

Performance Comparison 

Static Content Delivery: 

1. Nginx - Excellent 

2. LiteSpeed - Excellent 

3. Caddy - Very Good 



4. Apache - Good 

5. IIS - Good 

6. Tomcat - Fair (not designed for this) 

Dynamic Content Processing: 

1. LiteSpeed - Excellent 

2. Nginx with PHP-FPM - Very Good 

3. Apache with mod_php - Good 

4. Tomcat (for Java) - Excellent 

5. IIS (for .NET) - Excellent 

6. Caddy - Good 

Concurrency Handling: 

1. Nginx - Excellent (event-driven) 

2. LiteSpeed - Excellent (event-driven) 

3. Caddy - Very Good (Go-based concurrency) 

4. Apache - Good (with event MPM) 

5. IIS - Good 

6. Tomcat - Good (thread-based) 

Resource Consumption 

Memory Usage (Low to High): 

1. Nginx 

2. Caddy 

3. LiteSpeed 

4. Apache 

5. Tomcat 

6. IIS 

CPU Efficiency (Most to Least Efficient): 

1. Nginx 

2. LiteSpeed 

3. Caddy 

4. Apache 

5. Tomcat 

6. IIS 

Configuration and Management 

Ease of Configuration: 



1. Caddy - Simplest configuration 

2. IIS - GUI-based, user-friendly 

3. Nginx - Clean, logical syntax 

4. Apache - Flexible but complex 

5. LiteSpeed - Similar to Apache 

6. Tomcat - XML-based, moderate complexity 

Flexibility: 

1. Apache - Most flexible with extensive modules 

2. Nginx - Very flexible for modern needs 

3. LiteSpeed - Good Apache compatibility 

4. Tomcat - Flexible for Java environments 

5. IIS - Limited to Windows ecosystem 

6. Caddy - Simple but limited in some advanced scenarios 

Security Features 

All major web servers provide robust security features, but with different approaches: 

Apache: Extensive security through modules like mod_security, strong authentication options, 

and mature security practices. 

Nginx: Strong security through configuration, excellent for SSL/TLS termination, good rate 

limiting and access control. 

IIS: Deep Windows security integration, strong authentication with Active Directory, good 

security policies. 

LiteSpeed: Built-in anti-DDoS, good security defaults, ModSecurity compatibility. 

Tomcat: Java security model, good for Java application security, requires careful configuration. 

Caddy: Security-first design, automatic HTTPS, modern security defaults. 

Market Share and Adoption Trends 

Recent trends show: 

• Nginx continues to gain market share, particularly in high-traffic sites 

• Apache is declining but remains significant in shared hosting 

• IIS stable in Windows enterprise environments 

• LiteSpeed growing rapidly in managed hosting 

• Caddy gaining traction in modern development 

• Tomcat remains dominant in Java enterprise applications 



Cost Comparison 

Free and Open Source: 

• Apache - Completely free 

• Nginx - Free (with paid Plus version) 

• Tomcat - Completely free 

• Caddy - Free and open source 

Commercial/Proprietary: 

• IIS - Included with Windows Server (licensing costs) 

• LiteSpeed - Commercial license required (OpenLiteSpeed is free) 

Platform Support 

Cross-Platform: 

• Apache, Nginx, Tomcat, Caddy - Run on Windows, Linux, Unix, macOS 

Platform-Specific: 

• IIS - Windows only 

• LiteSpeed - Linux/Unix primarily (Windows support limited) 

Decision Matrix for Choosing a Web Server 

Choose Apache When: 

• You need maximum flexibility and module support 

• Using shared hosting environments 

• Requiring .htaccess functionality 

• Working with legacy applications 

• Need extensive community resources 

Choose Nginx When: 

• Serving high-traffic websites 

• Need efficient static content delivery 

• Implementing reverse proxy or load balancing 

• Optimizing resource usage 

• Building microservices architecture 

Choose IIS When: 



• Hosting ASP.NET or .NET Core applications 

• Working in Windows-centric environments 

• Requiring Active Directory integration 

• Need GUI-based management 

• Enterprise Windows applications 

Choose LiteSpeed When: 

• Hosting WordPress or PHP applications 

• Migrating from Apache but need better performance 

• Requiring Apache compatibility 

• Need built-in caching and optimization 

• Running shared hosting services 

Choose Tomcat When: 

• Developing Java web applications 

• Using Servlets and JSP 

• Need Java EE specifications support 

• Building Java-based APIs 

• Working in Java development environments 

Choose Caddy When: 

• Need automatic HTTPS quickly 

• Working on modern web projects 

• Prefer simple configuration 

• Building containerized applications 

• Rapid development and deployment 

Future Trends 

HTTP/3 and QUIC Protocol 

Web servers are increasingly adopting HTTP/3 and QUIC protocol for improved performance 

and reduced latency. Nginx, LiteSpeed, and Caddy already support these protocols. 

Containerization and Cloud-Native 

Web servers are being optimized for containerized environments with Docker and Kubernetes, 

with emphasis on lightweight footprints and easy orchestration. 

Edge Computing 



Web servers are evolving to support edge computing scenarios, bringing content and processing 

closer to users for reduced latency. 

Enhanced Security 

Automatic HTTPS, improved TLS implementations, and built-in security features are becoming 

standard expectations rather than optional features. 

Serverless Integration 

Web servers are adapting to work seamlessly with serverless architectures and Function-as-a-

Service (FaaS) platforms. 

Conclusion 

The choice of web server depends heavily on specific requirements, existing infrastructure, and 

application needs. While Nginx has emerged as a popular choice for modern high-performance 

applications, Apache remains relevant for its flexibility and extensive ecosystem. IIS continues 

to dominate Windows environments, while LiteSpeed offers compelling performance advantages 

for those willing to invest in commercial licensing. 

For new projects, Nginx and Caddy represent excellent choices for modern web applications, 

offering performance, security, and ease of deployment. For Java applications, Tomcat remains 

the go-to choice. Organizations with significant Microsoft technology investments will naturally 

gravitate toward IIS. 

Understanding the strengths and limitations of each web server enables informed decision-

making that aligns with organizational needs, technical requirements, and long-term strategic 

goals. 

 


